
1

Building resilient applications

on Azure

Jan Pollack & Ricardo Niepel

Technical Specialists for Azure App Innovation

Resilience patterns and validation – a sea of possibilities

2

AGENDA

01
How can cloud native

applications fail?

02
How can you build your

application resilient to failure?

03
How can I implement and validate a

resilient application architecture?

2

3

Anything
that can go wrong
will go wrong
Hopefully not!

„… and at the worst possible time” - Edward A. Murphy Jr, Murphy's law from ~1948

44

5

1. The network is reliable

2. Latency is zero

…
How can cloud native applications fail?

L. Peter Deutsch, 8 Fallacies of distributed computing from 1994

6

Reliable workloads are:

Highly available (HA) – amount of uptime
a system is ready to perform core or
essential functions

Resilient - able to recover gracefully from
failures and continue to function with
minimal downtime and data loss

RELIABILITY AND RESILIENCE

7

VIEWS ON FAILURE

Failure of a component

Focus on: Minimizing risk of failure

Questions to ask:

• How to implement error handling?

• What service SKU to select?

• What redundancy level to choose?

Failure of a dependency

Focus on: Detecting and isolating failures

Questions to ask:

• How to detect failures?

• How to protect myself?

• How to support recovery?

8

PRINCIPLES OF MICROSERVICES

Sam Newman, Building Microservices from 2014

Microservices

small autonomous

services

Culture of

automation

Hide internal

implementation

details

Decentralize all

the things
Deploy

independently

Isolate

failure

Highly

observable

Modeled around

business concepts

9

Zonal failure
Some compute will be completely unavailable

Load Balancer failure
Load balancing from the outside to some nodes will fail

Node failure
A compute node will fail completely

Disk failure
What is the max duration of data loss that is acceptable?

INFRASTRUCTURE FAILURES ARE RARE BUT CAN HAPPEN

>

Can be solved by

having sufficient available

distributed infrastructure

resources

<

10

Health probe unreliability
Service or health probe do not reflect true state

Node overload
Service runs but cannot respond in a timely manner due to
CPU/ memory/ disk

Port exhaustion
Service works but cannot connect to its dependencies

DNS resolution failures
Service works but cannot resolve its dependencies

PARTIAL INFRASTRUCTURE FAILURES ARE MORE COMMON

>

Needs to be solved by

application design to

detect and handle

accordingly

<

11

TRAITS OF RESILIENT SYSTEMS

Handle transient failures
When failure is encountered, retry, queue and orchestrate transactions/operations

Continue operations during failure
Some part of the system will always be in a failed state.

Maintain consistent state
Apply compensating logic across multiple data stores or

attempt resubmission until operation succeeds.

1212Bing Image Creator: Little ship in a bad storm in the middle of the sea

13

Demo

Contonance - Awesome Ship Maintenance

14

If the only tool you have
is a hammer, it is tempting to
treat everything as if it were
a nail.
How can you build your application
resilient to failure?

Abraham Maslow, Law of the instrument from 1966

15

Solution
Transparently handle failures as if the failure condition will
resolve itself.

Considerations
Only works if you can identify transient errors.

Use exponential back-off to allow for retries to be made
initially quickly, but then at progressively longer intervals, to
avoid hitting a subsystem with repeated frequent calls if the
subsystem may be struggling.

Apply jitter to prevent retries bunching into further spikes.

Beware
Only retry idempotent operations or provide compensating
logic.

RETRY
MAYBE IT'S JUST A BLIP

WHILE

RetryCount < RetryLimit

ABORT

RETRY

retry limit

reached

SUCCESS

action

succeeded

action

failed

16

Solution
Only allow an operation a limited amount of time to
complete.

Waiting forever (having no timeout) is a bad design strategy.
It leads to the blocking up of threads or connections (itself
often a cause of further failure), during a faulting scenario.

Considerations
May require operation to run on an additional thread, if it’s
not cancellable, doubling the number of threads you actually
require.

Beware
Easy with cancellable operations. If this isn’t possible,
Timeouts can become quite tricky.

TIMEOUT
DON’T WAIT FOREVER

16

17

Solution
Prevent an application from repeatedly trying to execute an
operation that is likely to fail and enables an application to
detect whether the fault has been resolved.

If the problem appears to have been fixed, the application
can try to invoke the operation.

Considerations
Circuit Breaker isn’t just a more elaborate Retry—it’s based
on the premises that subsequent calls will likely not succeed,
whereas Retry assume they will likely succeed.

Beware
Circuit Breaker are inherently stateful.

CIRCUIT BREAKER
STOP HITTING IT IF IT HURTS

CLOSED

OPEN
HALF

OPEN

failure

threshold

exceeded success

delay

failure

18

Solution
Allow applications to use resources only up to a limit,
and then throttle them when this limit is reached.

This can allow the system to continue to function and meet
service level agreements, even when an increase in demand
places an extreme load on resources.

Considerations
Often used as a building block for a higher-level larger
pattern (e.g. bulkhead).

Rate limiting (i.e. calls/sec) or leasing (i.e. a pool of n
resources) are typical stand-alone versions of Throttling.

Considerations
Familiarize yourself with the Throttling behaviors of Azure
services and APIs!

THROTTLING / RATE LIMITING
ENOUGH IS ENOUGH

18

1919Bulkheads of the vehicle transport ship USNS GILLILAND, U.S. National Archives

20

Solution
Limits the amount of resources different parts of your
application can consume.

Bulkheads prevent single unresponsive components or
instances from bringing down the whole system.

Considerations
Bulkhead can be implemented in various ways,
depending on the requirements and solution.

Beware
Finding the right grouping granularity can be difficult.

BULKHEAD
MAYBE IT'S JUST A BLIP

CLIENT 1

Service

Instance

Service A

Calling Service

Target Service

Pending Requests (max. 200)

Inflight Requests (max. 10)

Bulkhead

Policy

CLIENT 2

Service

Instance

CLIENT 3

Service

Instance

21

Solution
Introduce a queue between the task and the service.

The task and the service run asynchronously

at their own processing speed.

Considerations
Requires a separate channel for clients

to receive a task’s result (i.e. pub/sub, web sockets, etc).

Beware
Introduces a new dependency (i.e. the queue)

that may fail as well.

QUEUE-BASED LOAD LEVELING
KEEP CALM AND DISPATCH A MESSAGE

21

22

Solution
Establishes an action plan during a failure rather than leave
it to have unpredictable effects on your system.

Considerations
Defines an alternative value to be returned or action to be
executed in case of a failure.

Does not need to be complicated, sometimes a good user
experience is just enough.

Beware
Could add significant costs and latency to the system.

FALLBACK / GRACEFUL DEGRADATION
IT’S BETTER TO DO SOMETHING THAN TO DO NOTHING

Application

alternative succeeded

default action failed

Application

Fallback

23

Solution
defines multiple backup solutions when an operation fails.

Considerations
Hedging means spawning multiple concurrent execution

paths to substitute a possible failure on the primary path.

Initiates a primary action, waits a predefined interval.

After the interval, a parallel request as backup is made.

It waits for the first successful request to complete and

return it. Any other hedged ongoing request will terminate.

A common case is the use of multiple endpoints of a service

for retrieving a resource.

Beware
It has as primary goal to improve latency,

but it is load expensive.

HEDGING
WE TRY EVERYTHING WE CAN

23

action failed,

ignored

Service

Service

Service

Service

ignored / cancelled

Time

Primary

action

Hedged

actions

24

Everything fails,
all the time
How can I implement and validate a
resilient application architecture?

Werner Vogels, Chief Technology Officer of Amazon, from 2008

25

Demo

Implementation of Resilience Patterns

26

Reasons to fail…

• Transient HTTP errors
(still applies)

• Service failures
(still applies)

• Hit rate limits

• Throttling

• Price sensitivity

• Context input limits

RESILIENCY WHEN USING
GENERATIVE ARTIFICIAL INTELLIGENCE

Azure OpenAI, GPT, ChatGPT, LLaMA …

// Semantic Kernel - Retry Mechanisms
var semanticKernel = Kernel.Builder.WithRetryBasic(
 new BasicRetryConfig
 {
 MaxRetryCount = 3,
 UseExponentialBackoff = true,
 MinRetryDelay = TimeSpan.FromSeconds(2),
 MaxRetryDelay = TimeSpan.FromSeconds(8),
 MaxTotalRetryTime = TimeSpan.FromSeconds(30),
 RetryableStatusCodes = new[] { HttpStatusCode.TooManyRequests,
 HttpStatusCode.RequestTimeout },
 RetryableExceptions = new[] { typeof(HttpRequestException) }
 })
 .Build();

LangChain - Fallback Mechanisms
openai_llm = ChatOpenAI(max_retries=0)
anthropic_llm = ChatAnthropic()
fallback_anthropic = openai_llm.with_fallbacks([anthropic_llm])

short_llm = ChatOpenAI()
long_llm = ChatOpenAI(model="gpt-3.5-turbo-16k")
fallback_long = short_llm.with_fallbacks([long_llm])

fallback_nonchat = chatopenai_chain.with_fallbacks([openai_chain])
fallback_nonchat.invoke({"animal": "turtle"})

fallback_4 = chat_prompt | openai_35.with_fallbacks([openai_4])

27

Baseline

What the expected service’s steady state?
(My boat floats)

Hypothesis
What is the theory you want to validate?

(I believe my boat would still float even if ran into an iceberg)

Experiment
Act to validate the Hypothesis

(I tried running my boat into an iceberg)

Analysis
Validate the response to the experiment

(My boat sank…)

Improve
Take action to address unexpected results

(I have now installed bulkheads on my boat)

CHAOS ENGINEERING
VALIDATING ARCHITECTURE DECISIONS

27

Hypothesis

Experiment

Analysis

Improve

Baseline

28

Demo

Implementation of Fault Injection

29

Retry Pipelines
Microsoft.Extensions.Resilience

Microsoft.Extensions.Http.Resilience

• Timeouts

• Retry

• CircuitBreaker

• Bulk Heads

• Rate Limiting

• Hedging

Fault Injections
Microsoft.Extensions.Resilience.FaultInjection

• Latency

• Exceptions

• HttpResponse

• CustomResult

UPCOMING IN .NET 8 FOR CLOUD-NATIVE
APPLICATION DEVELOPMENT

Building high-scale and high-availability service in .NET 8

// Retry Pipelines in .NET 8
builder.Services.AddGrpcClient<ProductsClient>()
 .AddStandardResilienceHandler();

builder.Services.AddHttpClient<OrderServiceClient>()
 .AddStandardResilienceHandler();

"HttpStandardResilienceOptions": {
 "BulkheadOptions": {
 "MaxConcurrency": 1000,
 "MaxQueuedActions": 0
 },
 "TotalRequestTimeoutOptions": {
 "TimeoutInterval": "00:00:30",
 },
 "RetryOptions": {
 "ShouldRetryAfterHeader": false,
 "RetryCount": 3,
 "BaseDelay": "00:00:02"
 },
 "CircuitBreakerOptions": {
 "FailureThreshold": 0.1,
 "BreakDuration": "00:00:05"
 },
 "AttemptTimeoutOptions": {
 "TimeoutInterval": "00:00:10"
 }
}subject to change, current .NET 8 RC 1 features

30Bing Image Creator: Little ship on a sunny day, in the middle of the sea, view from above 30

31

Today’s example: Contonance

• resilient-cloud-apps: Building resilient applications on Azure (github.com)

Azure Reference Architecture & Guidance

• Reliable web app pattern - Azure Architecture Center | Microsoft Learn

• Reliability pillar - Microsoft Azure Well-Architected Framework | Microsoft Learn

.NET 8 Features for Cloud-Native Development

• Cloud-native development with .NET 8 | Microsoft Build 2023 – YouTube

• Microsoft.Extensions.Http.Resilience Namespace @ .NET 8 RC 1

• Microsoft.Extensions.Resilience.FaultInjection Namespace @ .NET 8 RC 1

Managed chaos engineering experimentation platform

• Azure Chaos Studio - Chaos engineering experimentation | Microsoft Azure

• Application reliability with Azure Load Testing and Chaos Studio | Microsoft Build 2023

FOLLOW-UPS
CALL TO ACTION

https://github.com/jplck/resilient-cloud-apps/
https://learn.microsoft.com/en-us/azure/architecture/web-apps/guides/reliable-web-app/overview
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/overview
https://www.youtube.com/watch?v=qoNflu8aRaA&ab_channel=MicrosoftDeveloper
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.http.resilience?view=dotnet-plat-ext-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.resilience.faultinjection?view=dotnet-plat-ext-8.0
https://azure.microsoft.com/en-us/products/chaos-studio
https://build.microsoft.com/en-US/sessions/bb7fdd0b-e63f-4003-b429-09fc5e498cda?source=sessions

32

Don't wait until it
crashes. Act now!

Please provide Session Feedback:

Building resilient applications on Azure
Resilience patterns and validation – a sea of possibilities

https://aka.ms/AzSum-S025

https://aka.ms/AzSum-S025

	Cover
	Slide 1: Building resilient applications on Azure
	Slide 2: Agenda
	Slide 3
	Slide 4

	1 How can cloud native applications fail?
	Slide 5: How can cloud native applications fail?
	Slide 6: Reliability and Resilience
	Slide 7: Views on Failure
	Slide 8: Principles of microservices
	Slide 9: Infrastructure failures are rare but can happen
	Slide 10: Partial infrastructure failures are more common
	Slide 11: Traits of Resilient Systems
	Slide 12: Bing Image Creator: Little ship in a bad storm in the middle of the sea
	Slide 13
	Slide 14
	Slide 15: Retry
	Slide 16: Timeout
	Slide 17: Circuit Breaker
	Slide 18: Throttling / Rate LIMITING
	Slide 19: Bulkheads of the vehicle transport ship USNS GILLILAND, U.S. National Archives
	Slide 20: Bulkhead
	Slide 21: Queue-BASED Load Leveling
	Slide 22: Fallback / Graceful degradation
	Slide 23: HEDGING
	Slide 24: How can I implement and validate a resilient application architecture?
	Slide 25
	Slide 26: Resiliency when using Generative artificial intelligence
	Slide 27: Chaos Engineering
	Slide 28
	Slide 29: Upcoming in .NET 8 for cloud-native Application development

	Follow-Up Angebote/CTA
	Slide 30: Bing Image Creator: Little ship on a sunny day, in the middle of the sea, view from above
	Slide 31: Follow-Ups
	Slide 32: Don't wait until it crashes. Act now!
	Slide 33: Please provide Session Feedback: Building resilient applications on Azure

